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Preface

The model investigation described herein was conducted for the U.S. Army
Engineer District, Pittsburgh, by the U.S. Army Engineer Waterways Experiment
Station (WES), Vicksburg, MS, a complex of five laboratories of the Engineer
Research and Development Center (ERDC). The study was conducted in the
Hydraulics Laboratory of WES during the period February 1994 to January 1996.
In October 1996, the WES Hydraulics Laboratory merged with the Coastal
Engineering Research Center to form the Coastal and Hydraulics Laboratory
(CHL). Dr. James R. Houston is the Director of the CHL.

During the course of the model Study, Messrs. Walter LePut, Ray Povirk, and
Mark Zaitzoff of the Hydraulic Design Section of the Pittsburgh District and
other navigation interests visited WES at different times to observe the model and
discuss test results. The Pittsburgh District was kept informed of the progress of
the study through monthly progress reports.

The model study was conducted under the direct supervision of Dr. L. L.
Daggett, Chief of the Navigation Division, Messrs. Michael Trawle, Chief of the
Rivers and Streams Branch and Thomas J. Pokrefke, Research Hydraulic
Engineer. The principal investigator in immediate charge of the navigation
portion of the model study was Mr. H. E. Park, assisted by Messrs. Ronald
Wooley, Edward Johnson, and James Sullivan and Ms. Debby George, all of the
Navigation Division. This report was prepared by Mr. Park and Mr Trawle.

Commander of ERDC during preparation and publication of this report was
COL Robin R. Cababa, EN. This report was prepared and published at the WES
complex of ERDC.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute
an official endorsement or approval of the use of such commercial products.




Conversion Factors Non-SI
to Sl Units ofMeasurement

Non-SI units of measurement used in this report can be converted to
SI (metric) units as follows:

Multiply J—E-y To Obtain }
cubic feet 0.02831685 cubic meters
degrees (angle) 0.01745329 radians
feet 0.3048 meters
miles (U.S. statute) 1.609344 kifometers
square miles 2.58998 sq kilometers
tons (2,000 pounds, mass) 907.1847 kilograms

“ pressure (1 Ib/ft?) 47.85 - Pascals (n/m?)




1 Introduction

Location and Description of Prototype

Hildebrand Lock and Dam is located on the left descending bank of the
Monongahela River about 108 miles' above the "Point" at Pittsburgh, PA. The
lock and dam are about 8 miles south of Morgantown, WV (Figure 1). The
principal structures existing at the site include an 84-ft by 600-ft lock and a
530-ft long gated dam. The pool created by the gated dam extends the
Monongahela River system upstream about 7.5 miles to Opekiska Lock and
Dam.

The Monongahela River system is formed by the confluence of the Tygart
Valley and West Fork Rivers near the city of Fairmont, WV, and flows in a
northerly direction about 128 miles to its confluence with the Allegheny River at
Pittsburgh, PA, to form the Ohio River.

At the time of this report, the Monongahela River system consisted of nine
locks and dams that connect Pittsburgh, PA, to the head of navigation near
Fairmont, WV. The Monongahela River locks and dams, from north to south,
are 2, 3, 4, Maxwell, Grays Landing, Point Marion, Morgantown, Hildebrand,
and Opekiska.

History of the Project

The original locks and dams on the Monongahela River system, 1 - 7, were
constructed by the Monongahela Navigation Company from 1839 to 1886 and
were acquired by the United States in 1897. From 1874 to 1903, slack water
navigation was extended to the head of the river with original Locks and
Dams 8-15. Since that time, several of the locks and dams have been replaced by
one lock and dam structure. Hildebrand Lock and Dam is an example. It was
constructed from 1956 to 1960 to replace original Locks and Dams 12 and 13
and placed into operation in 1959.

! A table of factors for converting non-S1 units of measurement to SI units can be found on
page vi. ’
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Need and Purpose of the Model Study

Because of the location of the Hildebrand project (downstream of a very
sharp left-hand bend) and the uniqueness of the depositing sediments, it was
necessary to use both a physical model and a numerical model to develop a plan
that would eliminate or reduce tendencies for fine-grain silts and clays,
intermingled with leaves and organics, from depositing in the upper lock
approach to the Hildebrand Lock. The physical model was used to (a) ensure
that the implemented plan did not have significant adverse impacts to navigation,
and (b) to qualitatively observe depositional tendencies in the upper lock
approach using potassium permanganate (liquid dye), polystyrene beads, and
confetti. The numerical model was used to quantify deposition rates in the upper
lock approach, both with existing conditions and with the implemented plan.

The physical model was also used to demonstrate the conditions resulting

from the proposed design to the project sponsors, and to ensure the design's
acceptability from a navigation standpoint.

Chapter 1 introduction




2 Physical Model

Description

The model reproduces about 1.7 miles of the Monongahela River from about
river mile 107.8 to 109.5 and the adjacent overbank areas that would contain
riverflows to about elevation 850.0 ft (NGVD).! The model was of the fixed-bed
type and the channel and overbank were constructed of a sand cement mortar and
shaped to follow sheet metal templates that were set to the proper elevation. The
model also reproduced the existing dam and the upper portion of the existing
lock and lock walls. The lock and dam were constructed of sheet metal and set
to the proper elevation. The channel portion of the model was constructed from
a hydrographic survey dated October - November 1989 and the overbank was
constructed from a topographic survey dated March - April 1990.

Scale Relations

The model was built to an undistorted linear scale of 1 ft (model) = 80 ft
(prototype). This scale allowed for accurate reproduction of current magnitudes,
cross-currents, and eddies, that would affect depositional tendencies and
navigation. Other scale relations resulting from the linear scale are:

Scale Relation
Characteristic Ratio Model : Prototype
Length L, 1:80
Area A =L2 1:6,400
Velocity V,=L" 1:8.94
Time T,=L" 1:8.94
Discharge Q. =L 1:57,243
Roughness n,=L" 1:2.08

! National Geodetic Vertical Datum.
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These scale relations allow measurements of current magnitudes, discharge, and
water-surface elevations to be quantitatively transferred from the model to the

prototype.

Appurtenances

Water was supplied to the model with a 10-cfs pump, which operated in a
recirculating system. The discharge was measured by a venturi meter and
controlled with a valve. Water-surface elevations were measured in the model
with piezometer gauges connected to a centrally located gauge pit. The upper
pool elevation was controlled with the gated dam and the tailwater elevation was
maintained with the model tailgate at the lower end of the model.

Current magnitudes and directions were determined with cylindrical floats
drafted to the depth of a loaded barge ( 9.0 ft prototype). Surface current
directions were observed in the model using confetti. A remote-controlled
model towboat was used to determine the effects of currents on tows entering
and leaving the upper lock approach. The towboat was equipped with twin
screws operating independently of each other and was propelled by two small
electric motors with a battery in the tow. The towboat could be operated in
forward and reverse and at scale speeds comparable to those using the
Monongahela waterway.

Model Verification

With existing conditions, i.e., the lock and dam in place, the model was
verified to prototype data furnished by the Pittsburgh District. These data were
surface current magnitudes for a riverflow of 13,600 cfs. The results of the
comparison indicated that the model reproduced conditions in the prototype with
areasonable degree of accuracy.

Chapter 2 Physical Model




-3 Tests and Results

The study of flow patterns, the measurement of current magnitudes and
directions, the observation of depositional tendencies, and the effects of currents
on the model tow were the primary concerns during this phase of the study.
These concerns were addressed with existing conditions and the implemented
plan.

Test Procedures

A representative selection of riverflows were used for testing based on
information provided by the U.S. Army Engineer District, Pittsburgh. The
following is a list of the riverflows that were used.

Discharge, cfs Upper Pool Elevation, ft Pool Condition
5,000 835.0 Controlled Pool
10,000 835.0 Controlled Pool
13,600 835.0 Controlled Pool
20,000 835.0 Controlled Pool
40,000 835.0 Controlled Pool
60,000 835.0 Controlled Pool
90,000 835.0 Uncontrolled Pool
120,000 837.4 Uncontrolled Pool

All riverflows tested were steady flow conditions.

Tests were conducted by introducing the proper discharge into the model and
maintaining the proper upper pool and tailwater elevations for a given discharge.
With base tests and Plan A, the upper pool elevation was controlled at model
gauge 5 (in the lock forebay) and the tailwater elevation was controlled at model
gauge 7 (Figure 2).

Chapter 3 Tests and Results
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Current directions and velocities were measured using a video tracking
system. Current directions were determined by plotting the paths of the floats,
and current magnitudes were recorded by timing the travel of the floats over a
measured distance. In the areas where turbulence, eddies, and crosscurrents
exist, the plots only show the main trends in the interest of clarity.

A model towboat, representing a pusher 120 ft long and a six-barge flotilla
(78 ft wide by 350 ft long), was used to demonstrate navigation conditions for
tows entering and leaving the upper lock approach. The video tracking system
was used to track the path of the model tow through the study reach.

Existing conditions were fully documented using the physical model. These
data from the physical model (i.e., current direction and velocity and water-
surface elevations), along with the sediment analysis, were furnished for input to
the numerical model such that deposition rates, deposition patterns, shear
stresses, and threshold velocities could be computed for the existing conditions.
Once the threshold velocities for scour and deposition were attained from the
numerical model for the existing conditions, several intermediate tests were
performed on the physical model. The purpose of these tests was to develop a
dike field that would increase velocities in the upper lock approach which would
reduce or eliminate deposition, and have the least adverse impacts to navigation.
After development of the dike field, referred to in this report as Plan A, physical
model data were again furnished to the numerical model to attain deposition
rates and patterns with the implemented plan.

Base Tests with Existing Conditions

Description

Base tests with existing conditions are shown in Figures 2 and 3 and consist
of the following principal features.

a. The upper portion of the 84-ft x 600-ft lock chamber adjacent to the left
descending bank. The lock chamber had a non-ported landside guide
wall extending to sta 6 + 47.5A and a non-ported riverside guard wall
extending to sta 3 + 13.0A.

b. A 530-fi-long dam consisting of six 60-ft-wide gate bays, with crest
elevation 816.0 ft and two 50-ft-wide fixed weirs with crest elevation
835.0 ft. The fixed weirs are located one adjacent to the lock chamber
and the other adjacent to the right bank abutment.

c. The upper lock approach was dredged to elevation 823.0 ft.

Chapter 3 Tests and Results
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Results

Water-surface elevations. Water-surface elevations are shown in Table 1.
These data indicate that with the controlled riverflows tested, the slope in water-
surface in the upper pool (model gauges 1-5) ranged from less than 0.1 ft/mile
with a riverflow of 5,000 cfs to about 0.9 ft/mile with a riverflow of 60,000 cfs.
With the open riverflows tested, the slope in water surface (model gauges 1-5)
ranged from about 1.5 ft/mile with a riverflow of 90,000 cfs to about 2.0 ft/mile
with a riverflow of 120,000 cfs.

Current direction and velocities. Current direction and velocity data are
shown on Plates 1 - 14. With the controlled riverflows tested, riverflows up to
60,000 cfs, the maximum current magnitudes recorded through the right-hand
bend ranged from about 1.8 fps with a riverflow of 10,000 cfs to about 10.4 fps
with a riverflow of 60,000 cfs. In the crossing between the bends, the maximum
current magnitudes tended to be along the left descending bank and ranged from
about 1.7 fps with a riverflow of 10,000 cfs to about 10.6 fps with a riverflow of
60,000.cfs. Through the left-hand bend, the maximum current magnitudes
recorded ranged from about 1.7 fps to 9.7 fps with riverflows of 10,000 cfs and
60,000 cfs, respectively. Current magnitudes in the vicinity of the dredged area
ranged from less than 0.5 fps with a riverflow of 10,000 cfs to about 4.0 fps with
a riverflow of 60,000 cfs.

With the open riverflow conditions tested, maximum current magnitudes
through the right-hand bend ranged in magnitude from about 13.0 fps to 15.8 fps
with riverflows of 90,000 cfs and 120,000 cfs, respectively. In the crossing
between the bends, maximum current magnitudes ranged from 14.6 fps with a
riverflow of 90,000 cfs to about 15.5 fps with a riverflow of 120,000 cfs.
Maximum current magnitudes through the left-hand bend ranged from about
13.8 fps to 15.3 fps with riverflows of 90,000 and 120,000 cfs, respectively. In
the vicinity of the dredged area, current magnitudes ranged from about 5.1 fps
with a riverflow of 90,000 cfs to about 6.4 fps with a riverflow of 120,000 cfs.

Navigation conditions, upper lock approach. Navigation conditions
entering and leaving the upper lock approach were evaluated using two
scenarios. The first scenario assumes that the upper lock approach was dredged
such that tows would not run aground. The second scenario assumes that
deposition had occurred in the upper lock approach and tows would steer clear of
the area.

Downbound tows. Plates 15-19 show navigation conditions for downbound
tows approaching the lock along the left descending bank in the vicinity of the
dredge area (the first scenario). Navigation conditions for downbound tows
entering the upper lock approach were satisfactory with riverflows up through
about 20,000 cfs. With a riverflow of 40,000 cfs, navigation conditions were
marginally acceptable. With riverflows up through 20,000 cfs, downbound tows
could align with and pass through the right-hand bend, make a crossing toward
the left bank, and drive or flank the left-hand bend upstream of the lock with
very little difficulty. However, once aligned with the lock chamber, downbound
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tows were required to drive the tow toward the landside guide wall to maintain
alignment with and enter the lock chamber (Plates 15-18). The difficulties in
maintaining alignment with and entering the lock chamber are associated with
the crosscurrent in the upper lock approach in the vicinity of the lock. In some
instances, depending on the river discharge or the pilot’s judgement, downbound
tows may require assistance to enter the lock chamber, i.e. helper boats, smaller
tow sizes, or catching a line on the guide wall. With riverflows of 20,000 cfs
and above, downbound tows would more than likely flank the bend upstream of
the lock, align with the lock chamber about two tow lengths upstream of the
guide wall, drive the tow to the landside guide wall, catch a line on the head of
the tow to align with, and enter the lock chamber (Plates 18 and 19).

Upbound tows. Navigation conditions for upbound tows leaving the lock
along the left descending bank in the vicinity of the dredged area (the first
scenario) are shown on Plates 20-24. Navigation conditions for upbound tows
leaving the upper lock approach were satisfactory for all riverflows tested.
Upbound tows could push out of the lock chamber, align with the flow, and
proceed upstream with no significant difficulties. However, the crosscurrent in
the upper lock approach in the vicinity of the lock was observed to have a
tendency to push the tow riverward and was more noticeable as the river
discharge increased.

Downbound tows. Plates 25-27 show navigation conditions for downbound
tows approaching the lock and steering clear of the deposition area in the upper
lock approach (the second scenario). Navigation conditions were satisfactory
with all riverflows tested up through 20,000 cfs. Downbound tows could
approach the lock from near the right descending bank, drive across the river
channel toward the upstream end of the guide wall, and align with and enter the
lock chamber with no significant difficulties for riverflows up to about
10,000 cfs (Plates 25 and 26). However, with a riverflow of 20,000 cfs
(Plate 27), downbound tows may require some assistance in maintaining
alignment with the lock chamber.

Upbound tows. Navigation conditions for upbound tows leaving the lock
and steering clear of the deposition area in the upper lock approach (the second
scenario) are shown on Plates 28-30. Navigation conditions for upbound tows
leaving the upper lock approach were satisfactory for all riverflows tested.
Upbound tows could push out of the lock chamber toward the right descending
bank, align with the flow, and proceed upstream with no significant difficulties.

Plan A

Description

The primary objective in the development of Plan A was to increase veloci-
ties in the upper lock approach above the threshold velocity for deposition; and
at the same time, ensure that the implemented plan did not have any significant
adverse impacts on navigation: As described previously, several intermediate

Chapter 3 Tests and Results 11
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tests were performed on the model which led to the development of Plan A. Plan
A 1s shown in Figure 4 and is the same as base tests with existing conditions
with one exception: Three submerged dikes were placed along the right
descending bank in the vicinity of the dredged area. Information about these
dikes can be found in Table 2.

Results

Water-surface elevations. Water-surface elevations are shown in Table 3.
These data indicate that with the controlled riverflows tested, the slope in water
surface in the upper pool (model gauges 1-5) ranged from less than 0.1 ft/mile
with a riverflow of 10,000 cfs to about 1.0 ft/mile with a riverflow of 60,000 cfs.
With the open riverflows tested, the slope in water surface (model gauges 1-5)
ranged from about 1.6 ft/mile with a riverflow of 90,000 cfs to about 2.0 ft/mile
with a riverflow of 120,000 cfs. With the open riverflows, water-surface
elevations in the upper pool were increased when compared to base tests by
about 0.3 ft.

Current direction and velocities. Current direction and velocity data were
collected for riverflows up through 40,000 cfs and are shown in Plates 31 - 38.
With all controlled riverflows tested, there were no significant changes in current
magnitudes or patterns observed in the crossing between the bends when
compared to base tests with existing conditions. However, the flow pattern in
the upper lock approach in the dredged area was generally parallel to the left
bank to a point just upstream of the riverward guard wall where the flow moves
across the approach and over the dam. Current magnitudes in the upper lock
approach in the dredged area were increased when compared to base tests with
existing conditions. On the average, current magnitudes in the upper lock
approach were increased anywhere from 0.2 to 0.6 fps when compared to base
tests with existing conditions. This was desired to increase the sediment-
carrying capacity of the flow and reduce shoaling in the upper lock approach.

Navigation conditions, upper lock approach. Navigation conditions
entering and leaving the upper lock approach were evaluated in the same manner
as base tests with existing conditions.

Downbound tows. Plates 39-44 show navigation conditions for downbound
tows approaching the lock along the left descending bank in the vicinity of the
dredged area (the first scenario). Navigation conditions for downbound tows
entering the upper lock approach were satisfactory with all riverflows tested, but
not without some difficulties. For riverflows up through 20,000 cfs (99.85 per-
cent of all lockages at this discharge or less), downbound tows could drive or
flank the left-hand bend upstream of the lock, align with, and drive the head of
the tow to the landside guide wall, where a line could be caught on the head of
the tow if needed to enter the lock chamber. Plates 40 and 42 show downbound
tows flanking the bend, where Plates 39, 41, and 43 show downbound tows
driving the bend upstream of the lock. With a riverflow of 40,000 cfs (Plate 44),
downbound tows were required to flank the bend to get aligned with the lock
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chamber. It should be noted that by increasing current magnitudes in the upper
lock approach to reduce deposition tendencies, the crosscurrent (outdraft)
upstream of the riverward guard wall was increased. By increasing the
crosscurrent, maintaining alignment with the lock chamber when close to the
lock is more difficult than those observed with base tests. Depending on pilot
Judgement, some assistance in maintaining alignment with the lock chamber may
be required, particularly with riverflows of 20,000 cfs and above (0.15 percent of
all lockages at this discharge or above).

Upbound tows. Navigation conditions for upbound tows leaving the lock
along the left descending bank in the vicinity of the dredge area (the first
scenario) are shown in Plates 45-48. Navigation conditions for upbound tows
leaving the upper lock approach were satisfactory for all riverflows tested.
However, it should be noted that the crosscurrent in the upper lock approach
upstream of the riverward guard wall in the vicinity of the lock was observed to
be about twice as strong as that observed with base tests with existing

- conditions.

Downbound tows. Plates 49-51 show navigation conditions for downbound
tows approaching the lock and steering clear of the deposition area in the upper
lock approach (the second scenario). In general, navigation conditions for
downbound tows approaching the lock were more difficult than those observed
with base tests due to the increased amount of flow in the upper lock approach.
The crosscurrent in the immediate vicinity of the lock was increased with the
implemented plan; thereby making it more difficult for downbound tows to
maintain alignment with the lock chamber. This tendency was most noticeable
as the river discharge increased to 10,000 cfs and above (Plates 50 and 51). Less
than 12 percent of all lockages occur at 10,000 cfs and above.

Upbound tows. Navigation conditions for upbound tows leaving the lock
and steering clear of the deposition area in the upper lock approach (the second
scenario) are shown on Plates 52-54. Navigation conditions were satisfactory for
all riverflows tested. Upbound tows could push out of the lock chamber toward
the right descending bank, align with the flow, and proceed upstream with no
significant difficulties. '
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4 Numerical Model

Model Description

The two-dimensional (2-D) numerical model study was conducted using the
TABS-2 modeling system."! This system provides 2-D solutions to open-channel
and sediment problems using finite element techniques. The system consists of
more than 40 computer programs to perform modeling and related tasks. A 2-D
depth-averaged hydrodynamic numerical model, RMA-2V, was used to generate
the flow field. The flow field was then used with the sediment properties of the
river as input to a 2-D sedimentation model, STUDH. The other programs in the
system perform digitizing, grid generation, data management, graphical display,
output analysis, and model interfacing tasks. The sediment model requires
hydraulic parameters from RMA-2V, sediment characteristics, inflow concentra-
tions, and sediment diffusion coefficients. The sediment is treated as cohesive,
and deposition rates were calculated with the equations of Krone.

The Finite Element Grid

Finite element grids were developed to simulate the Monongahela River from
river mile 107.8 downstream to river mile 109.5 at the Hildebrand Lock and
Dam, a distance of 1.7 miles. The overall grid was modified to accommodate
submerged dike plans only within the dike field. All other areas of the model
grid were identical for all testing. Initial bed elevations were obtained from the
same hydrographic surveys used for physical model construction. A typical
model grid of the entire 1.7-mile reach is shown in Figure 5. The existing
condition and plan grids were identical except in the area where the proposed
submerged dikes were located. The existing-condition grid in the study area is
shown in Figure 6. The plan grid within the study area is shown in Figure 7.
The existing condition grid consisted of 2,832 elements and 8,751 nodes, while
the plan grid consisted of 2,832 elements and 8,751 nodes.

! Thomas, W. A, and McAnally, W. H., Jr. (1985). “User’s manual for the generalized computer

program system; open-channel flow and sedimentation, TABS-2, main text and Appendices A
through O,” Instruction Report HL-85-1, U.S. Army Engineer Waterways Experiment Station,
Vicksburg, MS.
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Hydrodynamic Boundary Conditions

The model testing included four steady-state hydrodynamic boundary
conditions. For each condition, a discharge was specified at the upstream
boundary and a water level was specified at the downstream boundary. The

Chapter 4 Numerical Model




Figure 6. Existing-condition model grid within study area

discharges and stages used and the period of time simulated are given in the

following tabulation.
Discharge, cfs Downstream Elevation, ft Time, days
5,000 835.0 50
10,000 835.0 30
20,000 835.0 10
40,000 835.0 5

Within the study reach, Manning’s n values ranged from 0.025 in the main

river channel to 0.10 over the submerged dikes in the plan tests.
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Figure 7. Plan model grid within study area

Sediment Transport Boundary Conditions

The boundary information required by STUDH was suspended sediment
concentrations at the upstream boundary and bed sediments within the model.
Primary input parameters required by STUDH were dispersion coefficients,
critical shear stresses for deposition and erosion, critical concentrations, and
erosion rate constants.

Suspended sediment concentration
Suspended sediment concentrations used at the upstream boundary were

generated from sediment rating information received from the Pittsburgh District
Office as tabulated below:
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Water Discharge, CFS Sediment Load, tons/day Sediment Concentration, kg/m*®
5,000 350 0.026
10,000 1,620 0.060
13,600 5,680 0.105
20,000 20,750 0.192

Critical shear stresses

Based on the sediment sample analysis conducted at WES, the critical shear
stress for deposition used in the model was 0.08 Pa (n/m?) and the critical shear
stress for erosion used in the model was 0.50 Pa (n/m?). The particle settling
velocity was estimated to be 0.00012 m/sec.

Model Adjustment

Hydrodynamic adjustment

Because of the limited prototype velocity data, the adjustment procedure was
based on comparison to the physical model’s water level and velocity distribu-
tion results for discharges of 5,000 cfs, 10,000 cfs, 20,000 cfs, and 40,000 cfs.

The primary adjustment parameters required by the hydrodynamic code as
model input were Manning’s n values and turbulent exchange coefficients.
These parameters were adjusted within reasonable limits until velocity distribu-
tion in the study reach agreed with observations in the physical model for each
discharge tested.

Flow fields generated by the numerical model appeared reasonable.
Examples of existing-condition and plan velocity patterns for the 10,000-cfs
discharge are shown in Figures 8 and 9, respectively. The results can be
compared with Plates 1 and 2 and 31-33, respectively, from the physical model.

Sedimentation adjustment

Sedimentation adjustment was limited by the limited field data for verifica-
tion. The only available field data consisted of the bed sediment samples in the
depositional zone in the lock approach channel. The procedure for setting up the
sediment code was based on laboratory measurements of depositional and
erosional shear stresses for the bed sediment samples collected onsite. Once the
observed sediment parameters were set in the model, the results appeared
reasonable for the conditions tested.

Chapter4 Numerical Model
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Figure 8. Existing-condition velocity patterns for 10,000-cfs discharge

Tests and Results

The test procedure selected for evaluating existing conditions versus plan was
to step through the sediment model using the four steady-state discharges
sequentially. Each test started with 50 days of 5,000-cfs discharge, followed by
30 days of 10,000-cfs discharge, then 10 days of 20,000-cfs discharge, and then
finally S days of 40,000 cfs discharge.

During testing, it was determined that the 20,000- and 40,000-cfs steps were
unnecessary for plan evaluation, since these rare-event discharges were erosional
in the approach channel rather than depositional, and the approach channel was
excavated in rock and nonerodible.

Existing-condition and Plan A bed-shear-stress patterns for the 5,000-cfs and
10,000-cfs discharges are given in Figures 10 to 13. As demonstrated by these
figures, in the vicinity of the lock approach, the plan condition results in
significantly increased bed shear stresses over the existing condition, which in
turn should result in reduced deposition rates.
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Figure 9. Plan velocity patterns for 10,000-cfs discharge

Accumulated deposition in the vicinity of the lock approach after 50 days of
5,000-cfs discharge followed by 30 days of 10,000-cfs discharge is shown in
Figures 14 and 15. As demonstrated by these patterns, the Plan A deposition in
the vicinity of the lock approach is only a small fraction (about 20 percent) of
that observed under the existing condition. Based on these numerical model
results, it is concluded that the proposed dikes will be effective in significantly
reducing deposition of fine material in the lock approach.
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Figure 10. Bed shear stress, existing conditions, discharge = 5,000 cfs
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Figure 11. Bed shear stress, plan conditions, discharge = 5,000 cfs
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Figure 12. Bed shear stress, existing conditions, discharge = 10,000 cfs
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Figure 13. Bed shear stress, plan conditions, discharge = 10,000 cfs
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Figure 14. Deposition patterns, existing conditions, 50 days at 5,000 cfs and 30 days at
10,000 cfs
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Figure 15. Deposition patterns, plan conditions, 50 days at 5,000 cfs and 30 days at 10,000 cfs
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5 Conclusions

Analysis of this investigation’s results is based principally on the following:
the effects of the implemented plan on water-surface elevations, current direc-
tions and velocities, the effects of the resulting currents on the behavior of the
model towboat and barges entering and leaving the lock, and the reduction or
elimination of sediment in the upper lock approach.

The small scale of the model made it difficult to reproduce accurately the
hydraulic characteristics of the prototype structures or to measure water surface
elevations with an accuracy greater than + 0.1 ft prototype. The model was of
the fixed-bed type and was not designed to simulate the movement of sediment
in the prototype. Therefore, changes in channel configuration and slopes
resulting from changes in the channel bed and banks that might be caused by
changes in flow conditions could not be determined in the model.

Base Test

a. Navigation conditions were satisfactory for downbound tows for
riverflows up through 20,000 cfs (99.85 percent of all lockages at this
discharge or less). Navigation conditions were marginally acceptable for
downbound tows with a riverflow of 40,000 cfs. With riverflows of
20,000 cfs and above (0.15 percent of all lockages at this discharge or
above), downbound tows would more than likely flank the bend upstream
of the lock. A crosscurrent in the upper lock approach caused some
difficulties for downbound tows aligning and maintaining alignment with
the lock chamber. This was particularly true for the higher riverflows, i.e.
20,000 cfs and above.

b. Navigation conditions were satisfactory for upbound tows with all
riverflows tested. The crosscurrent in the upper lock approach was

observed to have a tendency to push the tow riverward while exiting the
lock.

Chapter 5 Conclusions
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Plan A

a. The addition of the three submerged dikes along the right descending
bank increased water-surface elevations at model gauge 1 from about
0.1 ft with a riverflow of 10,000 cfs to about 0.3 ft with a riverflow of
120,000 cfs when compared to base tests.

b. The addition of the three submerged dikes along the right descending
bank increased current magnitudes in the upper lock approach in the
range of 0.2 to 0.6 fps when compared to base tests. This was desired to
increase sediment carrying capacity and reduce shoaling in the upper lock
approach.

¢. Navigation conditions for downbound tows entering the upper lock
approach were satisfactory for all riverflows tested, but not without some
difficulties. The increased flow in the upper lock approach made align-
ing with and maintaining alignment with the lock chamber more difficult
due to an increase in the crosscurrent magnitudes in the immediate
vicinity of the lock. This was most noticeable with a riverflow of
20,000 cfs (99.85 percent of all lockages at this discharge or less).

d. Navigation conditions were satisfactory for upbound tows with all
riverflows tested. However, it should be noted that the crosscurrent in
the upper lock approach was observed to be stronger than conditions
observed with base tests.
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Table 1
Base Tests
Water-Surface Elevations (ft, NGVD)

Gauge Discharge in 1,000 cfs
N 5 10 13.6 20 40 60 90 120
1 835.0 835.0 835.1 835.2 835.6 836.2 837.1 840.2
2 835.0 835.0 835.1 835.1 835.3 835.6 836.0 838.9
3 835.0 835.0 835.0 835.0 835.2 835.3 835.6 838.3
835.0 837.5
835.0 8374
834.7 836.8
Slope <01 <0.1 <0.1 0.15 0.45 0.85 1.50 2.05

' Controlled elevations|

Table 2
Dike Locations, Plan A

Stream End of Dike

Approx. Top
Dike No. Northing Easting Azimuth Length Elevation
1 393,849 1,826,182 43°20' 09" 120 ft 820.0
2 394,072 1,825,871 32924' 44" 185 ft 820.0
3 394,296 1,825,544 30° 48' 04" 130 ft 820




Table 3
Plan A
Water-Surface Elevations (ft, NGVD)

Discharge in 1,000 cfs

Gauge -
No. 5 10 13.6 20 40 60 90 120
1 835.0 835.0 835.1 835.2 835.6 836.3 837.4 840.5
2 835.0 835.0 835.1 835.1 835.3 835.7 836.3 839.2
3 835.0 835.0 835.0 835.0 835.2 835.4 835.9 838.6
4 835.2 837.8
6 835.0 835.0 835.0 835.0 835.0 834.8 834.8 837.1
SLOPE <01 <01 <01 0.15 0.45 0.95 1.60 2.05

NOTE: Base test model setup was maintained,the plan installed, and water-
surface elevations were recorded.
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